Ancilla-driven instantaneous quantum polynomial time circuit for quantum supremacy
نویسندگان
چکیده
Instantaneous quantum polynomial time (IQP) is a model of (probably) non-universal quantum computation. Since it has been proven that IQP circuits are unlikely to be simulated classically up to a multiplicative error and an error in the l1 norm, IQP is considered as one of the promising classes that demonstrates quantum supremacy. Although IQP circuits can be realized more easily than a universal quantum computer, demonstrating quantum supremacy is still difficult. It is therefore desired to find subclasses of IQP that are easy to implement. In this paper, by imposing some restrictions on IQP, we propose ancilla-driven IQP (ADIQP) as the subclass of commuting quantum computation suitable for many experimental settings. We show that even though ADIQP circuits are strictly weaker than IQP circuits in a sense, they are also hard to simulate classically up to a multiplicative error and an error in the l1 norm. Moreover, the properties of ADIQP make it easy to investigate the verifiability of ADIQP circuits and the difficulties in realizing ADIQP circuits.
منابع مشابه
Achieving quantum supremacy with sparse and noisy commuting quantum computations
The class of commuting quantum circuits known as IQP (instantaneous quantum polynomialtime) has been shown to be hard to simulate classically, assuming certain complexity-theoretic conjectures. Here we study the power of IQP circuits in the presence of physically motivated constraints. First, we show that there is a family of sparse IQP circuits that can be implemented on a square lattice of n ...
متن کاملAn Investigation into the Realities of a
An Investigation into the Realities of a Quantum Datapath by Nemanja Isailovic Doctor of Philosophy in Computer Science University of California, Berkeley Professor John David Kubiatowicz, Chair Quantum computing has shown great potential for being able to solve certain problems which are intractable on classical machines. Peter Shor devised a means to factor large number in polynomial time on ...
متن کاملTwisted graph states for ancilla-driven quantum computation
We introduce a new paradigm for quantum computing called Ancilla-Driven Quantum Computation (ADQC) which combines aspects of the quantum circuit [1] and the one-way model [2] to overcome challenging issues in building large-scale quantum computers. Instead of directly manipulating each qubit to perform universal quantum logic gates or measurements, ADQC uses a fixed two-qubit interaction to cou...
متن کاملAn Investigation into the Realities of a Quantum Datapath
An Investigation into the Realities of a Quantum Datapath by Nemanja Isailovic Doctor of Philosophy in Computer Science University of California, Berkeley Professor John David Kubiatowicz, Chair Quantum computing has shown great potential for being able to solve certain problems which are intractable on classical machines. Peter Shor devised a means to factor large number in polynomial time on ...
متن کاملQuantum Supremacy and the Complexity of Random Circuit Sampling
A critical milestone on the path to useful quantum computers is quantum supremacy – a demonstration of a quantum computation that is prohibitively hard for classical computers. A leading near-term candidate, put forth by the Google/UCSB team, is sampling from the probability distributions of randomly chosen quantum circuits, which we call Random Circuit Sampling (RCS). In this paper we study bo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1611.00510 شماره
صفحات -
تاریخ انتشار 2016